966 resultados para Microscopy, Electron, Scanning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: the failure of osseointegration in oral rehabilitation has gained importance in current literature and in clinical practice. The integration of titanium dental implants in alveolar bone has been partly ascribed to the biocompatibility of the implant surface oxide layer. The aim of this investigation was to analyze the surface topography and composition of failed titanium dental implants in order to determine possible causes of failure.Methods: Twenty-one commercially pure titanium (cpTi) implants were retrieved from 16 patients (mean age of 50.33 +/- 11.81 years). Fourteen implants were retrieved before loading (early failures), six after loading (late failures), and one because of mandibular canal damage. The failure criterion was lack of osseointegration characterized as dental implant mobility. Two unused implants were used as a control group. All implant surfaces were examined by scanning electron microscopy (SEM) and energy-dispersive spectrometer x-ray (EDS) to element analysis. Evaluations were performed on several locations of the same implant.Results: SEM showed that the surface of all retrieved implants consisted of different degrees of organic residues, appearing mainly as dark stains. The surface topography presented as grooves and ridges along the machined surface similar to control group. Overall, foreign elements such as carbon, oxygen, sodium, calcium, silicon, and aluminum were detected in failed implants. The implants from control group presented no macroscopic contamination and clear signs of titanium.Conclusion: These preliminary results do not suggest any material-related cause for implant failures, although different element composition was assessed between failed implants and control implants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The articular disc of the temporomandibular joint was studied in fetuses (16 to 39 weeks of intrauterine life), infants (up to 4 months of age), dentulous adults (aged 30 to 39 years), and completely edentulous adults (aged 60 to 69 years) by scanning electron microscopy. The constituent bundles of collagen fibers were stratified and were oriented anteroposteriorly, laterolaterally, and obliquely in the middle portion of the disc. A ring of laterolateral bundles constituted the main feature of the thick posterior portion. In the anterior portion of the disc, the fibers were anteroposteriorly and obliquely oriented. On the superior and inferior surfaces of the disc, a thin layer of perpendicularly arranged collagen fibers covered the underlying, thick, laterolateral oriented collagen fibers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morphological features of the mid-palatal suture were studied in human foetuses from 4 to 9 months of intra-uterine life. The foetuses were divided into three age groups, GI (16-23 weeks), GII (24-31 weeks) and GIII (32-39 weeks). The mid-palatal suture in GI foetuses is rectilineal in form with a wide space between the palatal processes of the maxilla. The suture has a sinuous nature in GII and GIII foetuses due to growth of the bone processes crossing the mid-line. A wide zone of cellular proliferation observed in GI narrows in GII and GIII foetuses. The imbricating nature of the suture in GII and GIII is caused by bone growth adjacent to the mid-palatal suture. Sharpey's fibres, emerging from the bone processes, run to the median region of the mid-palatal suture and are observed from GI foetuses onwards. The collagen fibres of the mid-palatal suture are orientated transversely under the oral epithelium and exhibit a regular meshwork with a predominance of sagittal fibres in the median region of the suture. These fibres are orientated transversely and obliquely at the junction with the nasal septum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cells of the choroid plexus of the lateral ventricles of the monkey Cebus apella apella were examined through scanning electron microscopy at contributing to the description of such structures in primates. The animals were anesthetized previously with 3% hypnol intraperitoneally and after perfusion with 2.5% glutaraldehyde, samples of the choroid plexus were collected after exhibition of the central portion and inferior horn of the lateral ventricles. The ventricular surface of those cells presents globose form as well as fine interlaced protrusions named microvilli. Among those, it is observed the presence of some cilia. Resting on the choroid epithelial cells there is a variable number of free cells, with fine prolongations which extend from them. They are probably macrophages and have been compared to Kolmer cells or epiplexus cells, located on choroid epithelium. The choroid plexus of the encephalic lateral ventricles of the monkey Cebus apella apella at scanning electron microscopy is similar to that of other primates, as well as to that of other species of mammals mainly cats and rats, and also humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The corneal endothelium is essential for the maintenance of the corneal transparency. The aim of this study was to examine the morphology of the endothelial surface and perform morphometric analysis of the normal corneal endothelial cells of the Magellanic penguin (Spheniscus magellanicus) using scanning electron microscopy. The present work demonstrates that the corneal endothelium of the Magellanic penguin is similar to those described in other vertebrates. Copyright 2005 by American Association of Zoo Veterinarians.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acid etching promotes microporosities on enamel surface, which provide a better bonding surface to adhesive materials. The purpose of this study was to comparatively analyze the microstructure of enamel surface after etching with 37% phosphoric acid or with two self-etching primers, Non-rinse conditioner (NRC) and Clearfil SE Bond (CSEB) using scanning electron microscopy. Thirty sound premolars were divided into 3 groups with ten teeth each: Group 1: the buccal surface was etched with 37% phosphoric acid for 15 seconds; Group 2: the buccal surface was etched with NRC for 20 seconds; Group 3: the buccal surface was etched with CSEB for 20 seconds. Teeth from Group 1 were rinsed with water; teeth from all groups were air-dried for 15 seconds. After that, all specimens were processed for scanning electron microscopy and analyzed in a Jeol 6100 SEM. The results showed deeper etching when the enamel surface was etched with 37% phosphoric acid, followed by NRC and CSEB. It is concluded that 37% phosphoric acid is still the best agent for a most effective enamel etching.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to evaluate commercially pure titanium implant surfaces modified by laser beam (LS) and LS associated with sodium silicate (SS) deposition, and compare them with machined surface (MS) and dual acid-etching surfaces (AS) modified. Topographic characterization was performed by scanning electron microscopy-X-ray energy dispersive spectroscopy (SEM-EDX), and by mean roughness measurement before surgery. Thirty rabbits received 60 implants in their right and left tibias. One implant of each surface in each tibia. The implants were removed by reverse torque for vivo biomechanical analysis at 30, 60, and 90 days postoperative. In addition, the surface of the implants removed at 30 days postoperative was analyzed by SEM-EDX. The topographic characterization showed differences between the analyzed surfaces, and the mean roughness values of LS and SS were statistically higher than AS and MS. At 30 days, values removal torque LS and SS groups showed a statistically significant difference (p < 0.05) when compared with MS and AS. At 60 days, groups LS and SS showed statistically significant difference (p < 0.05) when compared with MS. At 90 days, only group SS presented statistically higher (p < 0.05) in comparison with MS. The authors can conclude that physical chemistry properties and topographical of LS and SS implants increases bone-implant interaction and provides higher degree of osseointegration when compared with MS and AS. © 2012 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The enteroendocrine cell is the cornerstone of gastrointestinal chemosensation. In the intestine and colon, this cell is stimulated by nutrients, tastants that elicit the perception of flavor, and bacterial by-products; and in response, the cell secretes hormones like cholecystokinin and peptide YY--both potent regulators of appetite. The development of transgenic mice with enteroendocrine cells expressing green fluorescent protein has allowed for the elucidation of the apical nutrient sensing mechanisms of the cell. However, the basal secretory aspects of the enteroendocrine cell remain largely unexplored, particularly because a complete account of the enteroendocrine cell ultrastructure does not exist. Today, the fine ultrastructure of a specific cell can be revealed in the third dimension thanks to the invention of serial block face scanning electron microscopy (SBEM). Here, we bridged confocal microscopy with SBEM to identify the enteroendocrine cell of the mouse and study its ultrastructure in the third dimension. The results demonstrated that 73.5% of the peptide-secreting vesicles in the enteroendocrine cell are contained within an axon-like basal process. We called this process a neuropod. This neuropod contains neurofilaments, which are typical structural proteins of axons. Surprisingly, the SBEM data also demonstrated that the enteroendocrine cell neuropod is escorted by enteric glia--the cells that nurture enteric neurons. We extended these structural findings into an in vitro intestinal organoid system, in which the addition of glial derived neurotrophic factors enhanced the development of neuropods in enteroendocrine cells. These findings open a new avenue of exploration in gastrointestinal chemosensation by unveiling an unforeseen physical relationship between enteric glia and enteroendocrine cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scanning electron microscopic (SEM) observations of the structure of the rete testis (RT) of guinea pigs preceded by and complemented with stereomicroscopy and light-microscopic studies showed that the RT of this species is predominantly cavitary. An axial and labyrinth-like morphological pattern was also observed in the RT complex, with partially interconnected chambers and epithelium-lined channels accompanying a connective axis observed in the middle portion of the cranial end of the testis. Characteristics of the chordae retis and bullae retis were also visualized in the guinea pig RT and the results are discussed in terms of the morphological patterns observed in the RT of other mammals and of man.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The aim of this study is to analyze the effects of copper vapor laser radiation on the radicular wall of human teeth. Materials and Methods: Immediately after the crowns of 10 human uniradicular teeth were cut along the cement-enamel junction, a chemical-surgical preparation of the radicular canals was completed. Then the roots were longitudinally sectioned to allow for irradiation of the surfaces of the dentin walls of the root canals. The hemi-roots were separated into two groups: one (control) with five hemi-roots that were not irradiated, and another (experimental) with 15 hemi-roots divided into three subgroups that were submitted to the following exposure times: 0.02,0.05, and 0.1 s. A copper vapor laser (510.6 nm) with a total average power of 6.5 W in green emission, frequency of 16.000 Hz, and pulse duration of 30 ns was used. Results: The results obtained by scanning electron microscope analysis showed the appearance of a cavity in the region of laser beam impact, with melting, recrystallization, and cracking on the edges of the dentin of the cavity due to heat diffusion. Conclusions: We determined that the copper vapor laser produces significant morphologic changes in the radicular wall of human teeth when using the parameters in this study. However, further research should be done to establish parameters that are compatible with dental structure in order to eliminate thermal damages. © Mary Ann Liebert, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The aim of this study was to evaluate the interfacial microgap with different materials used for pulp protection. The null hypothesis tested was that the combination of calcium hydroxide, resin-modified glass ionomer, and dentin adhesive used as pulp protection in composite restorations would not result in a greater axial gap than that obtained with hybridization only. Materials and Methods: Standardized Class V preparations were performed in buccal and lingual surfaces of 60 caries-free, extracted human third molars. The prepared teeth were randomly assessed in six groups: (1) Single Bond (SB) (3M ESPE, St. Paul, MN, USA); (2) Life (LF) (Kerr Co., Romulus, MI, USA) + SB; (3) LF + Vitrebond (VT) (3M ESPE) + SB; (4) VT + SB; (5) SB + VT; (6) SB + VT + SB. They were restored with microhybrid composite resin Filtek Z250 (3M ESPE), according to the manufacturer's instructions. However, to groups 5 and 6, the dentin bonding adhesive was applied prior to the resin-modified glass ionomer. The specimens were then thermocycled, cross-sectioned through the center of the restoration, fixed, and processed for scanning electron microscopy. The specimens were mounted on stubs and sputter coated. The internal adaptation of the materials to the axial wall was analyzed under SEM with × 1,000 magnification. Results: The data obtained were analyzed with nonparametric tests (Kruskal-Wallis, p ≤ .05). The null hypothesis was rejected. Calcium hydroxide and resin-modified glass ionomer applied alone or in conjunction with each other (p < .001) resulted in statistically wider microgaps than occurred when the dentin was only hybridized prior to the restoration. ©2005 BC Decker Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to evaluate, through scanning electronic microscopy, the effect of sharpening with different sharpening stones on the cutting angle of periodontal curettes (Gracey 5-6), and the influence on root surfaces after debridement and planing. The experimental model consisted of two different phases. In the first, the cutting angles of fifteen stainless steel Gracey 5-6 curettes were analyzed under a scanning electronic microscope after being sharpened with different types of stones. In the second phase, the root surfaces of 25 newly extracted teeth were evaluated with a scanning electronic microscope after being debrided with curettes sharpened with different stones. Analysis of the results showed that the synthetic stones (aluminum oxide and carborundum) are more abrasive and produce more irregular cutting angles, whereas Arkansas stones are less abrasive and produce smoother and more defined cutting angles. There was no significant statistical differences among the five groups tested with regard to the degree of irregularity of the root surfaces after instrumentation.